Predict CPBL,Pitcher Pan's Performance, 372 Games,Machine Learning 圖 4-3 顯示了ER、H和ERA_Delta這三個目標變量在四種不同模型(隨機森林、支持向量機、XGBoost和LSTM)中的預測表現。每一行代表一個目標變量,每一列代表一個模型。圖中的線條和指數平滑平均(EMA)分別顯示了實際值和模型預測值的變化趨勢。 隨機森林模型 隨機森林模型在ER、H和ERA_Delta上的預測表現如圖中第一列所示。實際值的波動較大,而預測值則相對平滑。隨機森林的EMA(紅色)與實際值的EMA(黑色)趨勢基本一致,表明該模型能夠較好地捕捉數據中的長期趨勢,但在一些高峰和低谷處存在一定的偏差。 支持向量機模型 第二列顯示了支持向量機模型的預測結果。相比其他模型,支持向量機在ER和H上的預測波動更大,這可能是因為該模型對數據的敏感性較高。雖然支持向量機的EMA(紅色)與實際值的EMA(黑色)基本保持一致,但在一些數值極端的點上,偏差仍然明顯。 XGBoost模型 XGBoost模型的預測結果如第三列所示。該模型在ER和H的預測上顯示出較好的表現,預測值與實際值的波動趨勢較為接近。XGBoost的EMA(紅色)與實際值的EMA(黑色)高度吻合,表明
Economic CPBL,Pitcher Pan's Performance, 372game Descriptive Statistics Pearson Correlation Analysis with H (安打) Pearson Correlation Analysis Results with 'H' as the Dependent Variable: Variable R Value P Value 5 R 0.713628 0.000000 6 ER 0.683962 0.000000 1 FB 0.679566 0.000000 2 NP 0.590262 0.000000 30
Predict K11.非傳染病相關性_HeatMap.0704 # Import necessary libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from google.colab import drive # Mount Google Drive drive.mount('/content/drive') # Load the data file_path = '/content/drive/My Drive/dataset/az_0704.csv' data
Predict K11.Pearson.r.p value Pearson Correlation with AZ PVR and corresponding P-values: Pearson Correlation \ pop_65y_pct 0.878693 OECD 0.715244 gdpg1 0.675784 nonhdl_mgdl 0.589307 gdppp2017 0.540096 hyperten_100k
Predict K11.各國非傳染病概覽_Non_HDL import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np from google.colab import drive # Suppress warnings import warnings warnings.simplefilter('ignore', np.RankWarning) # Mount Google Drive drive.mount('/content/drive') # Load the data file_path = '/content/drive/
Predict K11.各國非傳染病概覽_Depression import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np from google.colab import drive # Suppress warnings import warnings warnings.simplefilter('ignore', np.RankWarning) # Mount Google Drive drive.mount('/content/drive') # Load the data file_path = '/content/drive/
Predict K11.各國非傳染病的概覽_Hypertension import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np from google.colab import drive # Suppress warnings import warnings warnings.simplefilter('ignore', np.RankWarning) # Mount Google Drive drive.mount('/content/drive') # Load the data file_path = '/content/drive/
practice K11.各國非傳染病概覽_Alzheimer Alzheimer Prevalence import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from google.colab import drive # Mount Google Drive drive.mount('/content/drive') # Load the data file_path = '/content/drive/My Drive/dataset/az_0704.csv' data = pd.read_csv(file_path)
Predict 小結. a0. 八個 Model 的簡易版 To Be Continue... * Random Forest: n_estimators=1 * SVR: C=0.1, epsilon=0.1 * XGBoost: n_estimators=1 * LSTM: units=1, epochs=1 * Transformer: num_layers=1, d_model=2, num_heads=1, dff=2, epochs=1 * ARIMA: order=(1, 1, 0) * PCA: n_components=1 * KNN *
Predict TAIEX.s47_KNN(1'st)_0704 Source Code import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from statsmodels.tsa.arima.model import ARIMA from sklearn.linear_model import LinearRegression
Predict TAIEX.s46_LSTM(3). Future select by Forest 使用決策樹回歸進行特徵選擇,並使用選擇的特徵來訓練 LSTM 模型。最後打印所選的特徵變數並顯示實際值和預測值的圖表。 import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates from sklearn.metrics import mean_squared_error, mean_absolute_error from sklearn.preprocessing import MinMaxScaler from sklearn.ensemble import RandomForestRegressor from tensorflow.keras.models import
Predict TAIEX.s46_LSTM(2). Future select by Decision Tree. 使用決策樹進行特徵選擇,並使用選擇的特徵來訓練 LSTM 模型。 最後打印所選的特徵變數並顯示實際值和預測值圖 import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates from sklearn.metrics import mean_squared_error, mean_absolute_error from sklearn.preprocessing import MinMaxScaler from sklearn.tree import DecisionTreeRegressor from tensorflow.keras.models import
Predict TAIEX.s45_LSTM. Adj_Close 1. 特徵工程:使用 Adj_Close 計算移動平均線(MA7 和 MA21)、RSI 和 MACD。 2. 特徵選擇:使用隨機森林模型選擇最重要的特徵。 3. 數據標準化:將特徵和目標變量標準化。 4. 創建序列:為 LSTM 模型創建時間序列數據。 5. 構建 LSTM 模型:使用選擇的特徵來訓練 LSTM 模型。 6. 預測和評估:進行預測並計算誤差(MSE 和 MAE)。 7. 可視化:繪製實際值和預測值的圖表。 8. 打印特徵變數:打印所選的特徵變數。 source code import os import pandas as pd
Predict **TAIEX.s44_Linear Regression. import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates from sklearn.metrics import mean_squared_error, mean_absolute_error from sklearn.feature_selection import SelectKBest, f_regression from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_
Essay 希望.0703 寫給今新到來的新員工 Verse 1 在那微光初現的清晨 新生命的哭聲劃破寧靜 媽媽的眼中閃爍著淚光 那是愛和希望的交織 Chorus 希望在你的手心中跳動 每一次擁抱都是愛的傳遞 你的世界因你而美麗 新生命我們一同迎接奇蹟 Verse 2 小小的手握住了未來 每一步都是新的探索 媽媽的心中充滿著期盼 願你的人生充滿著光彩 Chorus 希望在你的手心中跳動 每一次擁抱都是愛的傳遞 你的世界因你而美麗 新生命我們一同迎接奇蹟 Bridge 無論前方多麼遙遠 媽媽會在你身旁守候 你的笑容是我最大的財寶 陪你走過每一段旅途 Chorus 希望在你的手心中跳動 每一次擁抱都是愛的傳遞 你的世界因你而美麗 新生命我們一同迎接奇蹟 Outro 在這充滿希望的未來 媽媽的愛永遠不變 新生命願你永遠幸福 這首希望的歌永遠為你而唱
Predict TAIEX.s92_使用 RandomForest 選擇特徵值,增加 Future Prediction Line 1. Transformer Prediction 有可能存在過擬合問題 2. Future Prediction Line 未 Training Output Index(['Date', 'ST_Code', 'ST_Name', 'Open', 'High', 'Low', 'Close', 'Adj_Close', 'Volume', 'MA7', 'MA21', 'MA50&
Predict TAIEX.s91_練習使用 RandomForest 選擇特徵值的用法 + RFE 試作 Output Shapes: test_labels: (6540,) transformer_predictions: (6540, 10) Adjusted transformer_predictions shape: (6540,) Random Forest MSE: 2545495.9702350823 SVR MSE: 9719829.364170404 XGBoost MSE: 2829341.20223588 LSTM MSE: 346273600.6513799 Transformer MSE: 16777426.64694445 Random Forest MAE: 903.3660629908254 SVR MAE: 2474.4028472217 XGBoost MAE: 999.7728105920297 LSTM MAE:
Predict **TAIEX.s43_Training.3th.RandomForest+SVR+XGB+Transformer. 訓練4 Picture 1 Shapes: test_labels: (6540,) transformer_predictions: (6540, 2) Adjusted transformer_predictions shape: (6540,) Random Forest MSE: 2538928.7593811294 SVR MSE: 13866232.38063333 XGBoost MSE: 5859048.980611635 LSTM MSE: 1862506.720476739 Transformer MSE: 0.020672246942703427 import os import pandas as pd import numpy as np import matplotlib.pyplot as
Predict **TAIEX.s43_Training.3th.RandomForest+SVR+XGB+Transformer. 訓練3 transformer_predictions: (6540, 2) Adjusted transformer_predictions shape: (6540,) Random Forest MSE: 2539254.211486759 SVR MSE: 13866232.398817357 XGBoost MSE: 5859048.979625798 LSTM MSE: 1753263.4853189574 Transformer MSE: 2732.7598143748187 import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates
Predict **TAIEX.s42_Training.2nd.RandomForest+SVR+XGB+Transformer. 簡易訓練 import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import
Predict TAIEX.s41_Training.1'st.第一次訓練,RandomForest+SVR import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR # 加載數據 file_path = '/content/drive/My Drive/MSCI_Taiwan_30_data_with_OBV.csv' data
Predict **TAIEX.s30_Future_Engineering.特徵工程 import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler # 加載數據 file_path = '/content/drive/My Drive/MSCI_Taiwan_30_data_with_OBV.csv' data = pd.read_csv(file_path) # 更改列名 data.rename(columns={'Close_MSCI': 'Close'}, inplace=True) # 1. 計算移動平均線
Predict **TAIEX.ML.s20_Missing Values Analysis.缺失值分析(填補重製) # Missing values analysis missing_values = data.isnull().sum() print("Missing Values Analysis:") print(missing_values) Missing Values Analysis: Date 0 ST_Code 0 ST_Name 0 Open 0 High 0 Low 0 Close_MSCI 0 Adj_Close 0 Volume 0 MA7 180 MA21 600 MA50 1470 MA100 2970
Predict **TAIEX.ML.s14_Box Plot.箱型圖 Box Plot Matrix Map 提供了對各變數數據分佈的直觀了解,有助於識別數據中的異常值和分佈特徵。通過觀察這些圖表,可以為後續的數據清洗和特徵工程提供參考。 Box Plot Matrix Map 圖表顯示了每個變數的數據分佈情況,其中包括中位數、四分位數範圍、異常值等信息。以下是圖表的摘要說明: 1. 數據範圍: * 大多數變數的數據範圍較小,集中在較低的數值區間。 * Volume 和 OBV 的數據範圍明顯大於其他變數,因此在圖表中顯示時有較大的差異。 2. 異常值(Outliers): * 幾乎所有變數都存在異常值,這些異常值顯示為圖表中的小圓點。 * 特別是 Volume、Band Width、MACD Line、Signal Line 等變數,異常值較多且分佈較廣。 3. 變數分佈: * 部分變數(如 Aroon Up、Aroon Down、RSI7、