VAR Study: TAIEX vs. Other Variables

VAR Study: TAIEX vs. Other Variables
Photo by Aaron Burden / Unsplash

2024-09-14. 基於 Vector Autoregressions ( Christopher A.Sims) 模型, 進行VAR模擬, 先以 TAIEX為目標作 VAR 分析

Cooper Future : NYMEX 銅期貨價格

Heatmap

Plot

S&P 500,TAIEX, and Copper

ADF Test: Copper
ADF Test Statistic               -1.932388
p-value                           0.316981
#Lags Used                       25.000000
Number of Observations Used    5663.000000
Critical Value (1%)              -3.431505
Critical Value (5%)              -2.862051
Critical Value (10%)             -2.567042
---
ADF Test: S&P 500
ADF Test Statistic                2.410000
p-value                           0.999015
#Lags Used                       33.000000
Number of Observations Used    5655.000000
Critical Value (1%)              -3.431507
Critical Value (5%)              -2.862051
Critical Value (10%)             -2.567042
---
ADF Test: TAIEX
ADF Test Statistic                0.798213
p-value                           0.991607
#Lags Used                       19.000000
Number of Observations Used    5669.000000
Critical Value (1%)              -3.431504
Critical Value (5%)              -2.862050
Critical Value (10%)             -2.567041
---
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.
  self._init_dates(dates, freq)
 VAR Order Selection (* highlights the minimums)  
==================================================
       AIC         BIC         FPE         HQIC   
--------------------------------------------------
0        10.02       10.02   2.242e+04       10.02
1        9.799      9.813*   1.802e+04       9.804
2        9.791       9.816   1.787e+04       9.800
3        9.787       9.822   1.780e+04      9.799*
4        9.788       9.834   1.782e+04       9.804
5        9.784       9.841   1.775e+04       9.804
6        9.784       9.851   1.774e+04       9.807
7        9.782       9.859   1.771e+04       9.809
8        9.781       9.869   1.770e+04       9.812
9        9.778       9.877   1.765e+04       9.813
10       9.779       9.888   1.767e+04       9.817
11      9.777*       9.897  1.763e+04*       9.819
12       9.779       9.909   1.766e+04       9.824
13       9.777       9.918   1.763e+04       9.826
14       9.778       9.929   1.764e+04       9.830
15       9.777       9.939   1.763e+04       9.834
--------------------------------------------------
Optimal lag length (based on AIC): 11
  Summary of Regression Results   
==================================
Model:                         VAR
Method:                        OLS
Date:           Thu, 12, Sep, 2024
Time:                     09:15:58
--------------------------------------------------------------------
No. of Equations:         3.00000    BIC:                    9.89697
Nobs:                     5677.00    HQIC:                   9.81917
Log likelihood:          -51817.6    FPE:                    17634.2
AIC:                      9.77759    Det(Omega_mle):         17321.1
--------------------------------------------------------------------
Results for equation Copper
==============================================================================
                 coefficient       std. error           t-stat            prob
------------------------------------------------------------------------------
const               0.000369         0.000668            0.552           0.581
L1.Copper          -0.084447         0.013816           -6.112           0.000
L1.S&P 500          0.000168         0.000027            6.293           0.000
L1.TAIEX            0.000005         0.000006            0.838           0.402
L2.Copper          -0.003673         0.013926           -0.264           0.792
L2.S&P 500          0.000023         0.000029            0.777           0.437
L2.TAIEX            0.000017         0.000006            2.666           0.008
L3.Copper           0.013719         0.013921            0.986           0.324
L3.S&P 500         -0.000070         0.000030           -2.362           0.018
L3.TAIEX            0.000011         0.000007            1.737           0.082
L4.Copper           0.000815         0.013922            0.059           0.953
L4.S&P 500          0.000009         0.000030            0.312           0.755
L4.TAIEX           -0.000004         0.000007           -0.585           0.559
L5.Copper          -0.022717         0.013918           -1.632           0.103
L5.S&P 500          0.000059         0.000030            1.996           0.046
L5.TAIEX           -0.000002         0.000007           -0.380           0.704
L6.Copper           0.000562         0.013925            0.040           0.968
L6.S&P 500         -0.000036         0.000030           -1.206           0.228
L6.TAIEX            0.000008         0.000007            1.212           0.225
L7.Copper           0.006853         0.013928            0.492           0.623
L7.S&P 500          0.000007         0.000030            0.231           0.818
L7.TAIEX            0.000015         0.000007            2.240           0.025
L8.Copper           0.022824         0.013931            1.638           0.101
L8.S&P 500         -0.000034         0.000030           -1.133           0.257
L8.TAIEX           -0.000001         0.000007           -0.200           0.842
L9.Copper          -0.004958         0.013921           -0.356           0.722
L9.S&P 500         -0.000030         0.000030           -0.999           0.318
L9.TAIEX           -0.000009         0.000007           -1.320           0.187
L10.Copper          0.005258         0.013915            0.378           0.706
L10.S&P 500         0.000020         0.000030            0.681           0.496
L10.TAIEX           0.000003         0.000006            0.436           0.663
L11.Copper          0.009044         0.013848            0.653           0.514
L11.S&P 500         0.000018         0.000029            0.631           0.528
L11.TAIEX           0.000003         0.000006            0.558           0.577
==============================================================================

Results for equation S&P 500
==============================================================================
                 coefficient       std. error           t-stat            prob
------------------------------------------------------------------------------
const               0.742552         0.349869            2.122           0.034
L1.Copper          -3.379820         7.236568           -0.467           0.640
L1.S&P 500         -0.085555         0.014022           -6.102           0.000
L1.TAIEX           -0.000609         0.003383           -0.180           0.857
L2.Copper           5.726605         7.294039            0.785           0.432
L2.S&P 500          0.031914         0.015441            2.067           0.039
L2.TAIEX            0.000983         0.003400            0.289           0.773
L3.Copper           6.759446         7.291304            0.927           0.354
L3.S&P 500         -0.003738         0.015490           -0.241           0.809
L3.TAIEX           -0.000048         0.003411           -0.014           0.989
L4.Copper           3.026094         7.291729            0.415           0.678
L4.S&P 500         -0.038558         0.015521           -2.484           0.013
L4.TAIEX            0.000539         0.003411            0.158           0.875
L5.Copper         -14.771486         7.289567           -2.026           0.043
L5.S&P 500          0.034417         0.015514            2.218           0.027
L5.TAIEX            0.003468         0.003429            1.011           0.312
L6.Copper         -14.739776         7.293202           -2.021           0.043
L6.S&P 500         -0.036809         0.015515           -2.372           0.018
L6.TAIEX           -0.000091         0.003432           -0.026           0.979
L7.Copper          -6.322053         7.294790           -0.867           0.386
L7.S&P 500          0.055219         0.015528            3.556           0.000
L7.TAIEX            0.000166         0.003425            0.048           0.961
L8.Copper          -1.144443         7.296627           -0.157           0.875
L8.S&P 500         -0.024724         0.015522           -1.593           0.111
L8.TAIEX           -0.009476         0.003425           -2.767           0.006
L9.Copper          -6.190974         7.291350           -0.849           0.396
L9.S&P 500          0.067708         0.015526            4.361           0.000
L9.TAIEX            0.001755         0.003420            0.513           0.608
L10.Copper         -3.499906         7.288272           -0.480           0.631
L10.S&P 500        -0.011379         0.015556           -0.731           0.464
L10.TAIEX           0.004479         0.003404            1.316           0.188
L11.Copper         21.213781         7.252876            2.925           0.003
L11.S&P 500         0.008159         0.015229            0.536           0.592
L11.TAIEX          -0.008788         0.003080           -2.853           0.004
==============================================================================

Results for equation TAIEX
==============================================================================
                 coefficient       std. error           t-stat            prob
------------------------------------------------------------------------------
const               0.819865         1.431377            0.573           0.567
L1.Copper         178.778808        29.606066            6.039           0.000
L1.S&P 500          1.796227         0.057365           31.312           0.000
L1.TAIEX           -0.100701         0.013842           -7.275           0.000
L2.Copper          47.365433        29.841192            1.587           0.112
L2.S&P 500          0.451291         0.063173            7.144           0.000
L2.TAIEX           -0.063990         0.013911           -4.600           0.000
L3.Copper         -23.989007        29.830003           -0.804           0.421
L3.S&P 500          0.245347         0.063370            3.872           0.000
L3.TAIEX            0.022098         0.013956            1.583           0.113
L4.Copper          25.907079        29.831741            0.868           0.385
L4.S&P 500         -0.033513         0.063500           -0.528           0.598
L4.TAIEX           -0.047384         0.013955           -3.396           0.001
L5.Copper          26.332188        29.822893            0.883           0.377
L5.S&P 500          0.296656         0.063471            4.674           0.000
L5.TAIEX           -0.035311         0.014028           -2.517           0.012
L6.Copper           3.567729        29.837764            0.120           0.905
L6.S&P 500         -0.001264         0.063476           -0.020           0.984
L6.TAIEX           -0.019490         0.014043           -1.388           0.165
L7.Copper          37.377408        29.844264            1.252           0.210
L7.S&P 500          0.177728         0.063527            2.798           0.005
L7.TAIEX           -0.004193         0.014014           -0.299           0.765
L8.Copper          16.852569        29.851778            0.565           0.572
L8.S&P 500         -0.011868         0.063504           -0.187           0.852
L8.TAIEX            0.021195         0.014013            1.513           0.130
L9.Copper         -26.427210        29.830188           -0.886           0.376
L9.S&P 500          0.046643         0.063521            0.734           0.463
L9.TAIEX            0.019363         0.013991            1.384           0.166
L10.Copper        -22.735512        29.817596           -0.762           0.446
L10.S&P 500        -0.068709         0.063642           -1.080           0.280
L10.TAIEX          -0.017838         0.013926           -1.281           0.200
L11.Copper        -51.761659        29.672786           -1.744           0.081
L11.S&P 500         0.173480         0.062305            2.784           0.005
L11.TAIEX          -0.017929         0.012601           -1.423           0.155
==============================================================================

Correlation matrix of residuals
             Copper   S&P 500     TAIEX
Copper     1.000000  0.237891  0.179215
S&P 500    0.237891  1.000000  0.248966
TAIEX      0.179215  0.248966  1.000000



Granger Causality Test: S&P 500 to TAIEX

Granger Causality
number of lags (no zero) 1
ssr based F test:         F=0.5134  , p=0.4737  , df_denom=5684, df_num=1
ssr based chi2 test:   chi2=0.5137  , p=0.4735  , df=1
likelihood ratio test: chi2=0.5137  , p=0.4735  , df=1
parameter F test:         F=0.5134  , p=0.4737  , df_denom=5684, df_num=1

Granger Causality
number of lags (no zero) 2
ssr based F test:         F=0.4526  , p=0.6360  , df_denom=5681, df_num=2
ssr based chi2 test:   chi2=0.9060  , p=0.6357  , df=2
likelihood ratio test: chi2=0.9059  , p=0.6358  , df=2
parameter F test:         F=0.4526  , p=0.6360  , df_denom=5681, df_num=2

Granger Causality
number of lags (no zero) 3
ssr based F test:         F=0.8440  , p=0.4696  , df_denom=5678, df_num=3
ssr based chi2 test:   chi2=2.5351  , p=0.4690  , df=3
likelihood ratio test: chi2=2.5345  , p=0.4691  , df=3
parameter F test:         F=0.8440  , p=0.4696  , df_denom=5678, df_num=3

Granger Causality
number of lags (no zero) 4
ssr based F test:         F=0.7840  , p=0.5354  , df_denom=5675, df_num=4
ssr based chi2 test:   chi2=3.1412  , p=0.5345  , df=4
likelihood ratio test: chi2=3.1403  , p=0.5346  , df=4
parameter F test:         F=0.7840  , p=0.5354  , df_denom=5675, df_num=4

Granger Causality
number of lags (no zero) 5
ssr based F test:         F=0.3779  , p=0.8642  , df_denom=5672, df_num=5
ssr based chi2 test:   chi2=1.8929  , p=0.8638  , df=5
likelihood ratio test: chi2=1.8926  , p=0.8638  , df=5
parameter F test:         F=0.3779  , p=0.8642  , df_denom=5672, df_num=5

Granger Causality
number of lags (no zero) 6
ssr based F test:         F=0.6990  , p=0.6504  , df_denom=5669, df_num=6
ssr based chi2 test:   chi2=4.2037  , p=0.6491  , df=6
likelihood ratio test: chi2=4.2022  , p=0.6493  , df=6
parameter F test:         F=0.6990  , p=0.6504  , df_denom=5669, df_num=6

Granger Causality
number of lags (no zero) 7
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/stattools.py:1545: FutureWarning: verbose is deprecated since functions should not print results
  warnings.warn(
ssr based F test:         F=0.2182  , p=0.9813  , df_denom=5666, df_num=7
ssr based chi2 test:   chi2=1.5316  , p=0.9812  , df=7
likelihood ratio test: chi2=1.5313  , p=0.9812  , df=7
parameter F test:         F=0.2182  , p=0.9813  , df_denom=5666, df_num=7

Granger Causality
number of lags (no zero) 8
ssr based F test:         F=0.3692  , p=0.9372  , df_denom=5663, df_num=8
ssr based chi2 test:   chi2=2.9623  , p=0.9367  , df=8
likelihood ratio test: chi2=2.9615  , p=0.9367  , df=8
parameter F test:         F=0.3692  , p=0.9372  , df_denom=5663, df_num=8

Granger Causality
number of lags (no zero) 9
ssr based F test:         F=1.2915  , p=0.2357  , df_denom=5660, df_num=9
ssr based chi2 test:   chi2=11.6627 , p=0.2330  , df=9
likelihood ratio test: chi2=11.6507 , p=0.2337  , df=9
parameter F test:         F=1.2915  , p=0.2357  , df_denom=5660, df_num=9

Granger Causality
number of lags (no zero) 10
ssr based F test:         F=1.5948  , p=0.1014  , df_denom=5657, df_num=10
ssr based chi2 test:   chi2=16.0075 , p=0.0994  , df=10
likelihood ratio test: chi2=15.9849 , p=0.1001  , df=10
parameter F test:         F=1.5948  , p=0.1014  , df_denom=5657, df_num=10

Granger Causality
number of lags (no zero) 11
ssr based F test:         F=1.8886  , p=0.0360  , df_denom=5654, df_num=11
ssr based chi2 test:   chi2=20.8594 , p=0.0349  , df=11
likelihood ratio test: chi2=20.8212 , p=0.0353  , df=11
parameter F test:         F=1.8886  , p=0.0360  , df_denom=5654, df_num=11
Granger Causality Test: Copper to TAIEX

Granger Causality
number of lags (no zero) 1
ssr based F test:         F=3.9918  , p=0.0458  , df_denom=5684, df_num=1
ssr based chi2 test:   chi2=3.9939  , p=0.0457  , df=1
likelihood ratio test: chi2=3.9925  , p=0.0457  , df=1
parameter F test:         F=3.9918  , p=0.0458  , df_denom=5684, df_num=1

Granger Causality
number of lags (no zero) 2
/usr/local/lib/python3.10/dist-packages/statsmodels/tsa/stattools.py:1545: FutureWarning: verbose is deprecated since functions should not print results
  warnings.warn(
ssr based F test:         F=4.7917  , p=0.0083  , df_denom=5681, df_num=2
ssr based chi2 test:   chi2=9.5918  , p=0.0083  , df=2
likelihood ratio test: chi2=9.5837  , p=0.0083  , df=2
parameter F test:         F=4.7917  , p=0.0083  , df_denom=5681, df_num=2

Granger Causality
number of lags (no zero) 3
ssr based F test:         F=3.8960  , p=0.0086  , df_denom=5678, df_num=3
ssr based chi2 test:   chi2=11.7025 , p=0.0085  , df=3
likelihood ratio test: chi2=11.6905 , p=0.0085  , df=3
parameter F test:         F=3.8960  , p=0.0086  , df_denom=5678, df_num=3

Granger Causality
number of lags (no zero) 4
ssr based F test:         F=2.8198  , p=0.0237  , df_denom=5675, df_num=4
ssr based chi2 test:   chi2=11.2970 , p=0.0234  , df=4
likelihood ratio test: chi2=11.2858 , p=0.0235  , df=4
parameter F test:         F=2.8198  , p=0.0237  , df_denom=5675, df_num=4

Granger Causality
number of lags (no zero) 5
ssr based F test:         F=2.3116  , p=0.0415  , df_denom=5672, df_num=5
ssr based chi2 test:   chi2=11.5806 , p=0.0410  , df=5
likelihood ratio test: chi2=11.5688 , p=0.0412  , df=5
parameter F test:         F=2.3116  , p=0.0415  , df_denom=5672, df_num=5

Granger Causality
number of lags (no zero) 6
ssr based F test:         F=2.2235  , p=0.0381  , df_denom=5669, df_num=6
ssr based chi2 test:   chi2=13.3717 , p=0.0375  , df=6
likelihood ratio test: chi2=13.3560 , p=0.0377  , df=6
parameter F test:         F=2.2235  , p=0.0381  , df_denom=5669, df_num=6

Granger Causality
number of lags (no zero) 7
ssr based F test:         F=2.6737  , p=0.0092  , df_denom=5666, df_num=7
ssr based chi2 test:   chi2=18.7656 , p=0.0090  , df=7
likelihood ratio test: chi2=18.7347 , p=0.0091  , df=7
parameter F test:         F=2.6737  , p=0.0092  , df_denom=5666, df_num=7

Granger Causality
number of lags (no zero) 8
ssr based F test:         F=2.3035  , p=0.0184  , df_denom=5663, df_num=8
ssr based chi2 test:   chi2=18.4836 , p=0.0179  , df=8
likelihood ratio test: chi2=18.4536 , p=0.0181  , df=8
parameter F test:         F=2.3035  , p=0.0184  , df_denom=5663, df_num=8

Granger Causality
number of lags (no zero) 9
ssr based F test:         F=2.2420  , p=0.0170  , df_denom=5660, df_num=9
ssr based chi2 test:   chi2=20.2458 , p=0.0165  , df=9
likelihood ratio test: chi2=20.2098 , p=0.0167  , df=9
parameter F test:         F=2.2420  , p=0.0170  , df_denom=5660, df_num=9

Granger Causality
number of lags (no zero) 10
ssr based F test:         F=2.1764  , p=0.0165  , df_denom=5657, df_num=10
ssr based chi2 test:   chi2=21.8450 , p=0.0159  , df=10
likelihood ratio test: chi2=21.8031 , p=0.0161  , df=10
parameter F test:         F=2.1764  , p=0.0165  , df_denom=5657, df_num=10

Granger Causality
number of lags (no zero) 11
ssr based F test:         F=2.0375  , p=0.0216  , df_denom=5654, df_num=11
ssr based chi2 test:   chi2=22.5033 , p=0.0208  , df=11
likelihood ratio test: chi2=22.4588 , p=0.0211  , df=11
parameter F test:         F=2.0375  , p=0.0216  , df_denom=5654, df_num=11